988 research outputs found

    Multiple acquired portosystemic shunts in a cat secondary to chronic diaphragmatic rupture

    Get PDF
    A cat with a chronic diaphragmatic rupture presented with neurological signs, including twitching and focal seizures. Blood ammonia level was markedly elevated and therefore neurological signs were thought to be related to hepatic encephalopathy. Exploratory laparotomy revealed that the left lateral and medial liver lobes were herniated into the thorax and multiple acquired portosystemic shunts (MAPSS) were present. The hernia was reduced and the diaphragm repaired. Neurological signs gradually resolved following surgery and 1 year postoperatively the cat was clinically normal, was not on any medication and had no evidence of hepatic dysfunction

    Downscaling species occupancy from coarse spatial scales

    Get PDF
    The measurement and prediction of species' populations at different spatial scales is crucial to spatial ecology as well as conservation biology. An efficient yet challenging goal to achieve such population estimates consists of recording empirical species' presence and absence at a specific regional scale and then trying to predict occupancies at finer scales. So far the majority of the methods have been based on particular species' distributional features deemed to be crucial for downscaling occupancy. However, only a minority of them have dealt explicitly with specific spatial features. Here we employ a wide class of spatial point processes, the shot noise Cox processes (SNCP), to model species occupancies at different spatial scales and show that species' spatial aggregation is crucial for predicting population estimates at fine scales starting from coarser ones. These models are formulated in continuous space and locate points regardless of the arbitrary resolution that one employs to study the spatial pattern. We compare the performances of nine models, calibrated at regional scales and demonstrate that a very simple class of SNCP, the Thomas process, is able to outperform other published models in predicting occupancies down to areas four orders of magnitude smaller than the ones employed for the parameterization. We conclude by explaining the ability of the approach to infer spatially explicit information from spatially implicit measures, the potential of the framework to combine niche and spatial models, and the possibility of reversing the method to allow upscaling

    Using exclusion rate to unify niche and neutral perspectives on coexistence

    Get PDF
    The competitive exclusion principle is one of the most influential concepts in ecology. The classical formulation suggests a correlation between competitor species similarity and competition severity, leading to rapid competitive exclusion where species are very similar; yet neutral models show that identical species can persist in competition for long periods. Here, we resolve the conflict by examining two components of similarity – niche overlap and competitive similarity – and modeling the effects of each on exclusion rate (defined as the inverse of time to exclusion). Studying exclusion rate, rather than the traditional focus on binary outcomes (coexistence vs exclusion), allows us to examine classical niche and neutral perspectives using the same currency. High niche overlap speeds exclusion, but high similarity in competitive ability slows it. These predictions are confirmed by a well-known model of two species competing for two resources. Under ecologically plausible scenarios of correlation between these two factors, the strongest exclusion rates may be among moderately similar species, while very similar and highly dissimilar competitors have very low exclusion rates. Adding even small amounts of demographic stochasticity to the model blurs the line between deterministic and probabilistic coexistence still further. Thus, focusing on exclusion rate, instead of on the binary outcome of coexistence versus exclusion, allows a variety of outcomes to result from competitive interactions. This approach may help explain species coexistence in diverse competitive communities and raises novel issues for future work

    Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales

    Get PDF
    A key challenge for both ecological researchers and biodiversity managers is the measurement and prediction of species richness across spatial scales. Typically, biodiversity is assessed at fine scales (e.g. in quadrats or transects) for practical reasons, but often we are interested in coarser-scale (field, regional, global) diversity issues. Moreover, the pressures affecting biodiversity patterns are often scale specific, making multiscale assessment a crucial methodological priority. As species richness is not additive, it is difficult to translate from the scale of measurement to the scale(s) of interest. A number of methods have been proposed to tackle this problem, but most are too model specific or too rigid to allow general application. Here, we present a general framework (and a specific implementation of it) that allows such scale translations to be performed. Building on the intrinsic relationships among patterns of species richness, abundance and spatial turnover, we introduce a framework that links and predicts the profile of the species-area relationship and the species-abundance distributions across scales when a limited number of fine-scale scattered samples are available. Using the correlation in species' abundances between pairs of samples as a function of the distance between them, we are able to link the effects of aggregation, similarity decay, species richness and species abundances across scales. Our approach allows one to draw inferences about biodiversity scaling under very general assumptions pertaining to the nature of interactions, the geographical distributions of individuals and ecological processes. We demonstrate the accuracy of our predictions using data from two well-studied forest stands and also demonstrate the potential value of such methods by examining the effects of management on farmland insects across scales. The framework has important applications to biodiversity research and conservation practice

    The development of path integration: combining estimations of distance and heading

    Get PDF
    Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing

    CYberinfrastructure for COmparative effectiveness REsearch (CYCORE): improving data from cancer clinical trials

    Get PDF
    Improved approaches and methodologies are needed to conduct comparative effectiveness research (CER) in oncology. While cancer therapies continue to emerge at a rapid pace, the review, synthesis, and dissemination of evidence-based interventions across clinical trials lag in comparison. Rigorous and systematic testing of competing therapies has been clouded by age-old problems: poor patient adherence, inability to objectively measure the environmental influences on health, lack of knowledge about patients’ lifestyle behaviors that may affect cancer’s progression and recurrence, and limited ability to compile and interpret the wide range of variables that must be considered in the cancer treatment. This lack of data integration limits the potential for patients and clinicians to engage in fully informed decision-making regarding cancer prevention, treatment, and survivorship care, and the translation of research results into mainstream medical care. Particularly important, as noted in a 2009 report on CER to the President and Congress, the limited focus on health behavior-change interventions was a major hindrance in this research landscape (DHHS 2009). This paper describes an initiative to improve CER for cancer by addressing several of these limitations. The Cyberinfrastructure for Comparative Effectiveness Research (CYCORE) project, informed by the National Science Foundation’s 2007 report “Cyberinfrastructure Vision for 21st Century Discovery” has, as its central aim, the creation of a prototype for a user-friendly, open-source cyberinfrastructure (CI) that supports acquisition, storage, visualization, analysis, and sharing of data important for cancer-related CER. Although still under development, the process of gathering requirements for CYCORE has revealed new ways in which CI design can significantly improve the collection and analysis of a wide variety of data types, and has resulted in new and important partnerships among cancer researchers engaged in advancing health-related CI

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology

    Get PDF
    Changing scale, for example the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interaction

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The Contribution of Occult Precipitation to Nutrient Deposition on the West Coast of South Africa

    Get PDF
    The Strandveld mediterranean-ecosystem of the west coast of South Africa supports floristically diverse vegetation growing on mostly nutrient-poor aeolian sands and extending from the Atlantic Ocean tens of kilometers inland. The cold Benguela current upwelling interacts with warm onshore southerly winds in summer causing coastal fogs in this region. We hypothesized that fog and other forms of occult precipitation contribute moisture and nutrients to the vegetation. We measured occult precipitation over one year along a transect running inland in the direction of the prevailing wind and compared the nutrient concentrations with those in rainwater. Occult deposition rates of P, N, K, Mg, Ca, Na, Al and Fe all decreased with distance from the ocean. Furthermore, ratios of cations to Na were similar to those of seawater, suggesting a marine origin for these. In contrast, N and P ratios in occult precipitation were higher than in seawater. We speculate that this is due to marine foam contributing to occult precipitation. Nutrient loss in leaf litter from dominant shrub species was measured to indicate nutrient demand. We estimated that occult precipitation could meet the demand of the dominant shrubby species for annual N, P, K and Ca. Of these species, those with small leaves intercepted more moisture and nutrients than those with larger leaves and could take up foliar deposits of glycine, NO3-, NH4 + and Li (as tracer for K) through leaf surfaces. We conclude that occult deposition together with rainfall deposition are potentially important nutrient and moisture sources for the Strandveld vegetation that contribute to this vegetation being floristically distinct from neighbouring nutrient-poor Fynbos vegetation
    corecore